Appendix 1. Chemical constituents of the *Artemisia ciniformis* aerial parts grown in the Northeast of Iran and their chemotaxonomic significance

Contents

1.	Compound (1): Hydroxydavanone
	Table 1. ¹ H (400 MHz) and ¹³ C (100 MHz) NMR data of compound (1), hydroxydavanone, in CDCl3
	Figure 1. ¹ H-NMR (400 MHz) spectrum of compound (1), hydroxydavanone, in CDCl ₃
	Figure 2. ¹³ C-NMR (100 MHz) spectrum of compound (1), hydroxydavanone, in CDCl ₃
	Figure 3. DEPT 90° (100 MHz) spectrum of compound (1), hydroxydavanone, in CDCl ₃ 7
	Figure 4. DEPT 135° (100 MHz) spectrum of compound (1), hydroxydavanone, in CDCl ₃ 7
	Figure 5. COSY spectrum of compound (1), hydroxydavanone, in CDCl ₃
	Figure 6. HSQC spectrum of compound (1), hydroxydavanone, in CDCl ₃
	Figure 7. HMBC spectrum of compound (1), hydroxydavanone, in CDCl ₃ 10
2.	Compound (2): Arteincultone
	Figure 8. ¹ H-NMR (400 MHz) spectrum of compound (2), arteincultone, in CDCl ₃ 12
3.	Compound (3): Xanthoxylin
	Figure 9. ¹ H-NMR (400 MHz) spectrum of compound (3), xanthoxylin, in CDCl ₃ 14
	Figure 10. HSQC spectrum of compound (3), xanthoxylin, in CDCl ₃
	Figure 11. COSY spectrum of compound (3), xanthoxylin, in CDCl ₃ 16
	Figure 12. HMBC spectrum of compound (3), xanthoxylin, in CDCl ₃ 17
4.	Compound (4): 2,4-dihydroxy-6-methoxyacetophenone
	Table 3. ¹ H (400 MHz) and ¹³ C (100 MHz) NMR data of compound 4, 2,4-dihydroxy-6-methoxyacetophenone, in CDCl3.18
	Figure 13 . ¹ H-NMR spectrum of compound (4), 2,4-dihydroxy-6-methoxyacetophenone, in CDCl ₃
	Figure 14. HSQC spectrum of compound (4), 2,4-dihydroxy-6-methoxyacetophenone, in CDCl ₃ 20
	Figure 15. COSY spectrum of compound (4), 2,4-dihydroxy-6-methoxyacetophenone, in CDCl ₃ 21
5.	Compound (5): Jaceosidin
	Figure 16. ¹ H-NMR (400 MHz) spectrum of compound (5), jaceosidin, in CDCl ₃
6.	Compound (6): Ciniformon
	Table 4. UV spectrophotometric results of tentatively identified compound (6), ciniformon in methanol
	Figure 17. ¹ H-NMR (400 MHz) spectrum of compound (6), ciniformon, in CH3OD 25
	Figure 18. EI-MS spectrum of compound (6); ciniformon
	Figure 19 . UV absorption spectrum of compound (6), ciniformon in methanol, λ_{max} I: 335 nm & λ_{max} II: 275 nm

Figure 20 . UV absorption spectrum of compound (6), ciniformon in methanol after adding CH ₃ ONa, λ_{max} I: 370 nm & λ_{max} II: 275 nm
Figure 21 . UV absorption spectrum of compound (6), ciniformon in methanol, 5 minutes after adding CH ₃ ONa, λ_{max} I: 370 nm & λ_{max} II: 275 nm
Figure 22 . UV absorption spectrum of compound (6), ciniformon in methanol after adding AlCl ₃ , λ_{max} I: 357 nm & λ_{max} II: 280 nm
Figure 23. UV absorption spectrum of compound (6), ciniformon in methanol after adding AlCl ₃ and HCl, λ_{max} I: 350 nm & λ_{max} II: 275 nm
Figure 24 . UV absorption spectrum of compound (6), ciniformon in methanol after adding CH ₃ COONa, λ_{max} I: 375 nm & λ_{max} II: 275 nm
Figure 25 . UV absorption spectrum of compound (6), ciniformon in methanol after adding CH ₃ COONa and B(OH) ₃ , λ_{max} I: 340 nm & λ_{max} II: 275 nm

1. Compound (1): Hydroxydavanone

 $C_{15}H_{24}O_3$; MW 252.35 g/mol; ¹H-NMR (CDCl₃, 400 MHz, *J* in Hz): δ_H 1.39 (*s*, 3H, H-1), 6.90 (*d*, *J* = 16, 1H, H-3), 6.43 (*d*, *J* = 16, 1H, H-4), 2.91 (*m*, 1H, H-6), 4.19 (*dt*, *J* = 8, 6, 1H, H-7), 1.59 (*m*, 1H, H-8_a), 1.84 (*m*, 1H, H-8_b), 1.69 (*m*, 1H, H-9_a), 1.94 (*m*, 1H, H-9_b), 5.87 (*dd*, *J* = 17.3, 10.5, 1H, H-11), 4.94 (*dd*, *J* = 16, 10.5, 1H, H-12_a), 5.17 (*dd*, *J* = 17.3, 16, 1H, H-12_b), 1.39 (*s*, 3H, H-13), 1.04 (*d*, *J* = 7, 3H, H-14), 1.26 (*s*, 3H, H-15). ¹³C-NMR (CDCl₃, 100 MHz): δ_C 29.2 (*q*, C-1), 70.9 (*s*, C-2), 152.6 (*d*, C-3), 125.2 (*d*, C-4), 203.0 (*s*, C-5), 49.8 (*d*, C-6), 80.4 (*d*, C-7), 29.3 (*t*, C-8), 37.5 (*t*, C-9), 82.9 (*s*, C-10), 144.6 (*d*, C-11), 111.4 (*t*, C-12), 29.3 (*q*, C-13), 13.0 (*q*, C-14), 26.5 (*q*, C-15).

Table 1. ¹H (400 MHz) and ¹³C (100 MHz) NMR data of compound (1), hydroxydavanone,in CDCl3.

Pos.	$\delta_{ m H},$ Mult., J in Hz	$\delta_{ m C}$	COSY	HSQC	НМВС
1	1.39 s	29.2	-	C ₁	C ₂ , C ₃ , C ₁₃
2	-	70.9	-	-	-
3	6.90 <i>d</i> (16)	152.6	4	C ₃	C ₁ , C ₂ , C ₄ , C ₅ , C ₁₃
4	6.43 <i>d</i> (16)	125.2	3	C_4	C ₂ , C ₃ , C ₅ , C ₆
5	-	203.0	-	-	-
6	2.91 m	49.8	7, 14	C ₆	C ₄ , C ₅ , C ₇ , C ₈ , C ₁₄
7	4.19 <i>dt</i> (8, 6)	80.4	6, 8 _a , 8 _b	C ₇	C ₅ , C ₆ , C ₈ , C ₉ , C ₁₄
8 _a	1.59 m	29.3	7, 9	C ₈	C ₆ , C ₇ , C ₉ , C ₁₀
8_b	1.84 <i>m</i>	29.3	7, 9	C ₈	C ₆ , C ₇ , C ₉ , C ₁₀
<i>9</i> _{<i>a</i>}	1.69 m	37.5	$8_{a}, 8_{b}, 9_{b}$	C ₉	C ₇ , C ₈ , C ₁₀ , C ₁₁ , C ₁₅
9 _b	1.94 <i>m</i>	37.5	$8_{a}, 8_{b}, 9_{a}$	C ₉	C ₇ , C ₈ , C ₁₀ , C ₁₁ , C ₁₅
10	-	82.9	-	-	-
11	5.87 <i>dd</i> (17.3, 10.5)	144.6	12 _a , 12 _b	C ₁₁	C ₉ , C ₁₂ , C ₁₅
12 _a	4.94 <i>dd</i> (16, 10.5)	111.4	11, 12 _b	C ₁₂	C ₉ , C ₁₁ , C ₁₅
12_b	5.17 <i>dd</i> (17.3, 16)	111.4	11, 12 _a	C ₁₂	C ₉ , C ₁₁ , C ₁₅
13	1.39 s	29.3	-	C ₁₃	C ₁ , C ₂ , C ₃
14	1.04 <i>d</i> (7)	13.0	6	C ₁₄	C ₅ , C ₆ , C ₇
15	1.26 s	26.5	-	C ₁₅	C ₉ , C ₁₀ , C ₁₁

.

Figure 1. ¹H-NMR (400 MHz) spectrum of compound (1), hydroxydavanone, in CDCl₃

Figure 2. ¹³C-NMR (100 MHz) spectrum of compound (1), hydroxydavanone, in CDCl₃

Figure 3. DEPT 90° (100 MHz) spectrum of compound (1), hydroxydavanone, in CDCl₃

Figure 4. DEPT 135° (100 MHz) spectrum of compound (1), hydroxydavanone, in CDCl₃

Figure 5. COSY spectrum of compound (1), hydroxydavanone, in CDCl₃

Figure 6. HSQC spectrum of compound (1), hydroxydavanone, in $CDCl_3$

Figure 7. HMBC spectrum of compound (1), hydroxydavanone, in CDCl₃

2. Compound (2): Arteincultone

 $C_{15}H_{24}O_4$; MW 268.35 g/mol; ¹H-NMR (CDCl₃, 400 MHz, *J* in Hz): δ_H 1.39 (*s*, 3H, H-1), 6.86 (*d*, *J*= 16, 1H, H-3), 6.39 (*d*, *J* = 16, 1H, H-4), 2.99 (*m*, 1H, H-6), 4.15 (*dt*, *J* = 8, 6, 1H, H-7), 1.54-2.06 (*overlapped*, H-8_a & H-8_b, H-9_a & H-9_b), 5.88 (*dd*, *J* = 10.5, 17.3, 1H, H-11), 5.16 (*dd*, *J* = 16, 17.3, 1H, H-12_a), 4.97 (*dd*, *J* = 10.5, 16, 1H, H-12_b), 1.39 (*s*, 3H, H-13), 1.03 (*d*, *J* = 7, 3H, H-14), 1.24 (*s*, 3H, H-15), 8.29 (*s*, 1H, OH).

Figure 8. ¹H-NMR (400 MHz) spectrum of compound (2), arteincultone, in CDCl₃

3. Compound (3): Xanthoxylin

 $C_{10}H_{12}O_4$; MW 196.20 g/mol; ¹H-NMR (CDCl₃, 400 MHz, *J* in Hz): δ_H 5.92 (*d*, *J* = 2.4, 1H, H-3), 6.06 (*d*, *J* = 2.4, 1H, H-5), 3.85 (*s*, 3H, 4-Methoxy), 3.82 (*s*, 3H, 6-Methoxy), 2.61 (*s*, 3H, MeCO). ¹³C-NMR (CDCl₃, 100 MHz): δ_C 105.9 (*s*, C-1), 162.9 (*s*, C-2), 93.5 (*d*, C-3), 167.6 (*s*, C-4), 90.7 (*d*, C-5), 166.1 (*d*, C-6), 203.2 (*s*, C=O), 32.8 (*q*, Ac), 55.5 (*q*, 4-Methoxy), 54.7 (*q*, 6-Methoxy).

Pos.	$\delta_{ m H},$ Mult., J in Hz	$\delta_{ m C}$	COSY	HSQC	HMBC
1	-	105.9	-	-	-
2	-	162.9	-	-	-
3	5.92 d (2.4)	93.5	-	C ₃	C ₁ , C ₅
4	-	167.6	-	-	-
5	6.06 d (2.4)	90.7	-	C ₅	C ₁ , C ₃
6	-	166.1	-	-	-
<i>C=O</i>	-	203.2	-	-	-
-Ac	2.61 s	32.8	-	C _{Ac}	-
4-Methoxy	3.85 s	55.5	-	C _{4-Methoxy}	-
6-Methoxy	3.82 s	54.7	-	C _{6-Methoxy}	-

Table 2. ¹H (400 MHz) and ¹³C (100 MHz) NMR data of compound (**3**), xanthoxylin, in CDCl3.

Figure 9. ¹H-NMR (400 MHz) spectrum of compound (3), xanthoxylin, in CDCl₃

Figure 10. HSQC spectrum of compound (3), xanthoxylin, in CDCl₃

Figure 11. COSY spectrum of compound (3), xanthoxylin, in CDCl₃

Figure 12. HMBC spectrum of compound (3), xanthoxylin, in CDCl₃

4. Compound (4): 2,4-dihydroxy-6-methoxyacetophenone

2,4-Dihydroxy-6-methoxy acetophenone

 $C_9H_{10}O_4$; MW 182.18 g/mol; ¹H-NMR (CDCl₃, 400 MHz, *J* in Hz): δ_H 5.91 (*s*, 1H, H-3), 5.98 (*s*, 1H, H-5), 3.87 (*s*, 3H, 6-Methoxy), 2.61 (*s*, 3H, MeCO). ¹³C-NMR (CDCl₃, 100 MHz): δ_C 106.3 (*s*, C-1), 166.1 (*s*, C-2), 96.4 (*d*, C-3), 165.3 (*s*, C-4), 91.9 (*d*, C-5), 167.2 (*d*, C-6), 203.4 (*s*, C=O), 33.0 (*q*, Ac), 55.7 (*q*, 6-Methoxy).

Table 3.	^{1}H (400	MHz) and	$d^{-13}C$ (100)	MHz) NMF	R data of	f compound	4 , 2,4-dihy	droxy-6-
methoxy	acetopher	one, in CI	DC13.					

Pos.	$\delta_{ m H},$ Mult., J in Hz	$\delta_{ m C}$	COSY	HSQC
1	-	106.3	-	
2	-	166.1	-	
3	5.91 s	96.4	-	C ₃
4	-	165.3	-	
5	5.98 s	91.9	-	C ₅
6	-	167.2	-	-
C=O	-	203.4	-	-
-Ac	2.61 s	33.0	-	C _{Ac}
6-Methoxy	3.87 s	55.7	-	C _{6-Methoxy}

Figure 13. ¹H-NMR spectrum of compound (**4**), 2,4-dihydroxy-6-methoxyacetophenone, in CDCl₃

Figure 14. HSQC spectrum of compound (4), 2,4-dihydroxy-6-methoxyacetophenone, in $CDCl_3$

Figure 15. COSY spectrum of compound (4), 2,4-dihydroxy-6-methoxyacetophenone, in $CDCl_3$

5. Compound (5): Jaceosidin

 $C_{17}H_{14}O_7$; MW 330.29 g/mol; ¹H-NMR (CH₃OD, 400 MHz, *J* in Hz): δ_H 6.66 (*s*, 1H, H-3), 6.61 (*s*, 1H, H-8), 7.52 (*s*, 1H, H-2'), 6.96 (*d*, *J* = 8.3, 1H, H-5'), 7.54 (*d*, *J* = 8.3, 1H, H-6'), 3.99 (*s*, 3H, 6-Methoxy), 3.91 (*s*, 3H, 3'-Methoxy); EI-MS *m*/*z* (rel. int.): 51 (16.8), 63 (8.7), 69 (100), 77 (15.9), 83 (4.8), 89 (7.7), 95 (5.3), 105 (21.2), 115 (6.7), 122 (18.8), 133 (15.4), 139 (29.7), 149 (32.7), 156 (8.7), 167 (15.4), 175 (3.4), 183 (4.8), 189 (3.4), 217 (2.9), 229 (4.8), 237 (2.9), 243 (2.4), 257 (8.7), 272 (7.2), 278 (2.4), 287 (60.6), 301 (29.8), 312 (64.4), 318 (5.8), 330 (91.8).

Figure 16. ¹H-NMR (400 MHz) spectrum of compound (5), jaceosidin, in CDCl₃

6. Compound (6): Ciniformon

 $C_{18}H_{16}O_8$; MW 360.32 g/mol; ¹H-NMR (CH₃OD, 400 MHz, *J* in Hz): δ_H 6.67 (*s*, 1H, H-3), 6.61 (*s*, 1H, H-8), 7.15 (*d*, *J* = 2, 1H, H-2'), 7.12 (*d*, *J* = 2, 1H, H-6'), 3.89 (*s*, 3H, 3'-Methoxy), 3.91 (*s*, 3H, 4'-Methoxy), 3.96 (*s*, 3H, 7-Methoxy). EI-MS *m*/*z* (rel. int.): 55 (22.0), 69 (100), 76 (5.1), 83 (20.3), 90 (5.9), 97 (14.4), 105 (12.3), 112 (5.9), 119 (16.1), 129 (10.2), 139 (36.4), 146 (5.1), 153 (19.5), 164 (36.4), 171 (23.7), 179 (26.7), 189 (5.5), 202 (5.1), 217 (7.2), 225 (3.8), 236 (4.2), 259 (12.3), 273 (11.0), 287 (5.9), 301 (10.6), 317 (46.2), 326 (5.9), 333 (28.8), 342 (62.3), 360 (86.4s).

Reagent	$\lambda_{max} I (nm)$	λ_{max} II (nm)
CH ₃ OH	335	275
CH ₃ ONa	370	275
CH ₃ ONa (after 5 min.)	370	275
AlCl ₃	357	280
AlCl ₃ /HCl	350	275
CH ₃ COONa	375	275
CH ₃ COONa/B(OH) ₃	340	275

 Table 4. UV spectrophotometric results of tentatively identified compound (6), ciniformon in methanol.

Figure 17. ¹H-NMR (400 MHz) spectrum of compound (6), ciniformon, in CH3OD

Figure 18. EI-MS spectrum of compound (6); ciniformon

Figure 19. UV absorption spectrum of compound (6), ciniformon in methanol, λ_{max} I: 335 nm & λ_{max} II: 275 nm.

Figure 20. UV absorption spectrum of compound (6), ciniformon in methanol after adding CH₃ONa, λ_{max} I: 370 nm & λ_{max} II: 275 nm.

Figure 21. UV absorption spectrum of compound (6), ciniformon in methanol, 5 minutes after adding CH₃ONa, λ_{max} I: 370 nm & λ_{max} II: 275 nm.

Figure 22. UV absorption spectrum of compound (6), ciniformon in methanol after adding AlCl₃, λ_{max} I: 357 nm & λ_{max} II: 280 nm.

Figure 23. UV absorption spectrum of compound (6), ciniformon in methanol after adding AlCl₃ and HCl, λ_{max} I: 350 nm & λ_{max} II: 275 nm.

Figure 24. UV absorption spectrum of compound (6), ciniformon in methanol after adding CH₃COONa, λ_{max} I: 375 nm & λ_{max} II: 275 nm.

Figure 25. UV absorption spectrum of compound (6), ciniformon in methanol after adding CH₃COONa and B(OH)₃, λ_{max} I: 340 nm & λ_{max} II: 275 nm.